EPFL Automne 2024
Algebre Lineaire Avancee, MATH-110

Correction Série 1

Tous les exercices seront corriges. La correction sera postee sur le moodle vers le
Lundi de la semaine suivante.

1 Recurrences

Exercice 1. Le principe de recurrence est la proposition suivante :

Proposition 1. Soit N C N un sous-ensemble de l’ensemble des entiers et ng > 0
un entier. On suppose que les deux conditions suivantes sont verifiees

1. ng € N,
2. et quesin €N alorsn+1€N (n+1 est ce qu'on a appele le "successeur” de
n construit pendant le cours : en termes d’ensembles

n+1: U :{0’1’...’71_177’]/}
{n,{n}}

mais on peut simplement y penser en terme d’entier comme on en a ’habitude).

Alors on a
N}nOZ{REN, TL}TLQ}CN.

1. Demontrer cette proposition (dans le langage ”classique” avec les objets notion
et raisonnement dont vous avez 1’habitude ; sans utiliser le langage formel de la
logique des predicats du premier ordre...).

Solution 1. Il faut demontrer que Ns,,; C N. Dans le cours on a vu que N est defini
comme ’ensemle qui contient 0 et tous les successeurs (ca veut dire : le succeseur de
0, le successeur de successeur, le successeur de successeur de successeur..). En premier
on note que ng € N par la premiere hypothése de la Proposition. Par la deuxieme
hypothese A contient tous les successeurs de ng. Mais c’est exactement la definition

de N,,,. Ainsi Ny C V.



Exercice 2. Utiliser le principe de recurrence ci-dessus pour demontrer les resultats
suivants

1. Pour tout entier n > 1

3

n(n—i—l).

Zan) =14+ 4n=3 k="

k=1

En deduire que pour tout n > 1

n

L1434+ 2n—1)=) (2k—1)=n’.
k=1

2. Redemontrer ce dernier resultat a ’aide du principe de recurrence.
3. Pour tout entier n > 0

o (n) = 12+...+n2:i:n(n+1)(2n+1)'

k=1 6

Solution 2.
1. On definit 'ensemble N par

m(m + 1)

N={meN: m=>1let X (m)= 5

ki
Si on peut montrer que cet ensemble satisfait Proposition 1 avec ny = 1, on peut
conclure que N>; C N. Ainsi tous entiers naturel positive satisfont la condition

Yi(m) = % Il reste a montrer les deux points de la Proposition 1.
1(1+1)

Pour le premier point : On a 1 € N parce que Xi(1) = 1 = =5—. Pour le

deuxieéme point : Si n € meN on sait que Zl(n)w. Alors

Yin+1)=1+...+n+1
=31(n)+ (n+1)
n(n+1)

===+t )

nn+1)+2(n+1)
2
(n+1)(n+2)
2

Ainsi n + 1 € N. On a alors demontré le premier part de I'exercise 2.1.



Pour le deuxieme part on veut demontrer que

n

L4344+ 2n—1)=) (2k—1)=n".
k=1

On note que

I+3+...+(2n—-1)=14+2+434+... +2n—-2—-4—...2n
2n n
“> k=Y
k=1 j=1
2n n
=323
k=1 j=1

2n(2 1 1
_ n( Z+ ) — n(n2+ ) par le premier part

2. On definit 'ensemble N par

m
N={meN : m>1let Z(Zi{;—l):mQ}.
k=1
Maintenant on vérifie les deux points de la Proposition 1. On a que 1 € N/, car
1=12.Sin € meN on a que

1+34+5+--+(2n—1)=n>
En ajoutant 2(n + 1) — 1, c’est-a~dire 2n + 1, on obtient
143454+ -+2n—-1D)+2n+1)=n*+2n+1) = (n+ 1)

ce qui montre I’égalité pour n + 1. Ainsi n + 1 € meN. Ainsi I'égalité est vraie
pour tout entier > 1 par Proposition 1.

3. On definit 'ensemble N par

nn+1)2n+1)

N:={meN : m=0et Xy(n) = 5

}.

On vérifie les deux points de la Proposition 1. On a que 0 € N, car 0 = 190E)

6
SlnEmCN on a que




Alors

Son4+1) =12+ ... + (n+ 1)
=Yo(n) + (n+1)°
:n(n—l— )6(2n+1)+(n+1)2
nn+1)2n+1)+6(n+1)(n+1)
6
(n+1)(n+2)(2n+3)

T 6

Ainsi n + 1 € N. Ainsi I'égalité est vraie pour tout entier > 0 par Proposition
1.

Exercice 3. Soit £ > —1 un nombre reel. Montrer en utilisant le principe de recur-
rence que pour tout entier n > 1

(14+2)" > 14+ nz. (Inegalite de Bernoulli)

Solution 3. On peut encore definir I’ensemble N par
Ni={meN: :m>let(1+2z)">1+nz}.

Maintenant on motrer Proposition 1. Evidemment pour n = 1 I'inégalité de Bernoulli
est vraie. Supposons alors que (1 + )" > 1 4 nz. Alors, pour n+ 1, on a :

(14 2)"" = (14 2)"(1 + )
> (1+nx)(1+x) (on utilise 'hypothese et que (14 x) > 0)
=1+ (n+ 1)z + na®
>14+(n+ 1z (car nz > 0).

Ainsi I'inégalité est vraie pour tout entier > 1.

2 Ensembles

Exercice 4. On rappelle que si E est un ensemble, la reunion de E, | est I'ensemble
dont les elements sont exactement les elements des elements de E (on rappelle que
ces elements sont eux-meme des ensembles qui peuvent donc posseder des elements).



1. Soit A # () un ensemble non vide, montrer que
=4
{4}

2. Que valent

U.-U. Ur

0 {0y {04}
3. Que vaut AU (?
Solution 4.
1. On va montrer I'egalité par double inclusion. On commence avec z € |J. Par

{4}
definition ca veut dire que x est un element d’un element de {A}. Plus concrete-
ment : Les elements de {A} sont A, alors x est un element de A. Ainsi z € A et
avec ca x est contenue dans la coté droite et on a fini la premiere inclusion. Pour
I’autre inclusion on prends un y € A. Si y € A, on sait que y est un element
d’un element de {A}. Ainsi par la definition de la reunion y € |J et on peut

{A}
conclure autre inclusion.
2. 0,0et A
3. A

Exercice 5. Soit X un ensemble. Pour A, B des sous-ensembles de X on defini la
difference de A et B
A-B:={recA x¢B}CX

(les elements de A qui ne sont pas des elements de B). En particulier
X-A={reX, s ¢gA}CX

(I’ensemble des elements de X qui ne sont pas dans A) est appelle le complementaire
de A dans X et est note A°.

On defini alors la difference symetrique de A et B en posant
AAB:=AUB—-ANB={r€ AUB, s ¢ ANB} C X

(les elements de X qui sont dans la reunion de A et B et qui ne sont pas dans leur
intersection).

1. Montrer que AAB = BAA=(A—-B)U(B—A).
2. Calculer PAA, AAA, AAX, AAAC.



Solution 5.
1.

AAB={rx€ AUB, v ¢ AN B}
={(xreAouzeB)et (x ¢ ANDB)}
={(reAetaz¢g ANB)ou(reBetx ¢ ANB)}
={(reAetz ¢ B)ou(reBetxg A}
={(zr€Aetz ¢ B)}U{(reBetxgA)}
=(A-B)U(B-A)

Peut étre egalement démontré par double inclusion.
2. DAA=A AAA =0, AAX = A°, AANA° =X

Exercice 6. On considere 'application polynomiale (dite de Cantor)
C:(mn) e N’ ((m+n)*+m+3n)/2eN.

1. Verifier que C est bien une application de N? vers N.

2. Calculer les valeurs C'(m, n) pour m+n < 3 et les reporter sur les point (m,n) €
Z? d’une representation du quart de plan {(z,y), z,y > 0}.

3. Pour k£ > 0 un entier, on definit le sous-ensemble
Dy = {(m,n) € N*, m +n = k}.

Quelles sont les valeurs prises par C'(m,n) quand (m,n) decrit Dy ?
4. En deduire que pour tout entier [ € N il existe (m,n) tel que

C(m,n) =1

et que un tel couple (m,n) est unique. On dit que I'application polynomiale
C : N2 — N est une bijection entre N? et N.

Remarque. Une autre application possible (obtenue par symetrie) est
C'(m,n) = ((m+n)*+3m+n)/2.

On ne sait pas si il y existe d’autre applications polynomiales etablissant une bijection
entre N? et N.

Solution 6.

1. Rappelons nous d’abord de quelques faits utiles. Pour n,m € N :



e Sin et m sont tous les deux pairs ou tous les deux impairs alors n +m est
pair :
Dans le premier cas on écrit n = 2p et m = 2¢q avec p,q € N, puis on voit
facilement que n +m = 2(p + q) est pair.
eN
Dans le deuxieme cas on écrit n = 2p+1,m = 2g + 1 et alors n +m =
2(p+q+ 1), ce qui montre a nouveau la parité.
———
eN
e Sin est pair et m est impair alors n + m est impair (par un raisonnement
similaire au précédent).
e Le carré d’un entier pair est pair :
De méme qu’avant, on écrit n = 2p et alors n? = 4p? = 2 31;2/ donc n?

. eN
est pair.
e Le carré d'un entier impair est impair :
De méme qu’avant, on écrit n = 2p + 1 et alors n? = 4p? +4p + 1 =
2. 2p® + 2p+1 donc n? est impair.
——
eN
Maintenant on veut montrer que (m+n)?+m+ 3n est toujours pair en faisant
une grande disjonction des cas sur la parité de n et m :
e n et m pairs : alors m + n et m + 3n sont pairs, donc (m + n)* +m + 3n
est aussi pair et donc C'(m,n) € NV’
e n et m impairs : pareil qu’au dessusv’
e 1 pair et m impair : alors n+m est impair, (n+m)? aussi, et m+ 3n aussi,
donc (m +n)? +m + 3n est pair et C(m,n) € NV’
e 1 impair et m pair : pareil qu’au dessusv’

Les paires possibles sont
{(m,n) € N* | n+l < 3} = {(0,0),(0,1),(0,2), (0,3),(1,0), (1,1),(1,2), (2,0),(2,1),(3,0)}

Les valeurs de C'(m,n) sont données par le tableau ci-dessous :

n\m|[0|1[2]3
0 0136
1 21417
2 5|8

3 9

Remarquons tout d’abord qu’on peut ré-écrire Dy, = {(m,k—m) | 0 < m < k}.

Alors Y(m,k —m) € Dy, : C(m,k —m) = (mtk—m)243mtk—m _

k
3 +m et

+
2
~——

=:ck

donc
C(Dy) ={cr+m | 0<m <k} = [cx, e + K]



(les doubles crochets symbolisent des intervalles d’entiers).

Nous avons défini la grandeur ¢; pour pouvoir exprimer plus simplement la re-

lation suivante : Vk € N, cx11 = ¢ + k+ 1. En effet # +k+1= M# =

(k+1)2+(k+1)
2

Ainsi, tous les intervalles C'(Dy) sont contigus, et ne se chevauchent pas (si
I'intervalle C'(Dy) se termine a la borne a, alors l'intervalle C'(Dy) commence a
la borne a + 1). Comme ils commencent & 0 et leur taille ne fait qu’augmenter,
ils couvrent tout N et ils en créent une partition :

N=||c(Dy)

keN

On pourrait aussi le voir & partir du fait que la suite {cg }ren est strictement
croissante et tend vers +oo donc

N = |_| [[Ck, Ck—i—l[[: I_l C(Dk)

keN keN

Tout d’abord, Vk € N, la restriction C|p, : Dy — C(Dy,) est bijective puisqu’elle
est définie de maniére "affine” : C(m, k — m) = ¢ + m. Ensuite, pour montrer
que C' elle-méme est bijective on n’a qu’a montrer que chaque élément y € N a
un unique antécédent par C. C’est le cas puisque les ensembles C(Dy), k € N
forment une partition de N, donc Ik, € N : y € C(Dy, ). Mais alors comme C'
est bijective lorsque restreinte a Dy, y a un unique antécédent dans Dy, et donc
dans N?. §’il y en avait un autre dans Dy, alors on aurait {y} € C'(Dy,)NC(Dy)
et donc l'intersection n’est pas vide comme on ’a montré dans la question
précédente.

Ainsi C' : N2 — N est bien bijective. O
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