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Correction Série 1

Tous les exercices seront corriges. La correction sera postee sur le moodle vers le
Lundi de la semaine suivante.

1 Recurrences

Exercice 1. Le principe de recurrence est la proposition suivante :

Proposition 1. Soit N ⊂ N un sous-ensemble de l’ensemble des entiers et n0 ⩾ 0
un entier. On suppose que les deux conditions suivantes sont verifiees

1. n0 ∈ N ,

2. et que si n ∈ N alors n+1 ∈ N (n+1 est ce qu’on a appele le ”successeur” de
n construit pendant le cours : en termes d’ensembles

n+ 1 =
⋃

{n,{n}}

= {0, 1, · · · , n− 1, n}

mais on peut simplement y penser en terme d’entier comme on en a l’habitude).

Alors on a
N⩾n0 = {n ∈ N, n ⩾ n0} ⊂ N .

1. Demontrer cette proposition (dans le langage ”classique” avec les objets notion
et raisonnement dont vous avez l’habitude ; sans utiliser le langage formel de la
logique des predicats du premier ordre...).

Solution 1. Il faut demontrer que N⩾n0 ⊂ N . Dans le cours on a vu que N est defini
comme l’ensemle qui contient 0 et tous les successeurs (ca veut dire : le succeseur de
0, le successeur de successeur, le successeur de successeur de successeur..). En premier
on note que n0 ∈ N par la premiere hypothèse de la Proposition. Par la deuxieme
hypothèse N contient tous les successeurs de n0. Mais c’est exactement la definition
de N⩾n0 . Ainsi N0 ⊂ N .



Exercice 2. Utiliser le principe de recurrence ci-dessus pour demontrer les resultats
suivants

1. Pour tout entier n ⩾ 1

Σ1(n) := 1 + · · ·+ n =
n∑

k=1

k =
n(n+ 1)

2
.

En deduire que pour tout n ⩾ 1

1 + 3 + · · ·+ (2n− 1) =
n∑

k=1

(2k − 1) = n2.

2. Redemontrer ce dernier resultat a l’aide du principe de recurrence.

3. Pour tout entier n ⩾ 0

Σ2(n) := 12 + · · ·+ n2 =
n∑

k=1

=
n(n+ 1)(2n+ 1)

6
.

Solution 2.

1. On definit l’ensemble N par

N := {m ∈ N : m ⩾ 1 et Σ1(m) =
m(m+ 1)

2
}

Si on peut montrer que cet ensemble satisfait Proposition 1 avec n0 = 1, on peut
conclure que N⩾1 ⊂ N . Ainsi tous entiers naturel positive satisfont la condition

Σ1(m) = m(m+1)
2

. Il reste a montrer les deux points de la Proposition 1.

Pour le premier point : On a 1 ∈ N parce que Σ1(1) = 1 = 1(1+1)
2

. Pour le

deuxième point : Si n ∈ mcN on sait que Σ1(n)
n(n+1)

2
. Alors

Σ1(n+ 1) = 1 + . . .+ n+ 1

= Σ1(n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

Ainsi n+ 1 ∈ N . On a alors demontré le premier part de l’exercise 2.1.



Pour le deuxieme part on veut demontrer que

1 + 3 + · · ·+ (2n− 1) =
n∑

k=1

(2k − 1) = n2.

On note que

1 + 3 + . . .+ (2n− 1) = 1 + 2 + 3 + . . .+ 2n− 2− 4− . . . 2n

=
2n∑
k=1

k −
n∑

j=1

2j

=
2n∑
k=1

−2
n∑

j=1

j

=
2n(2n+ 1)

2
− 2

n(n+ 1)

2
par le premier part

= n2

2. On definit l’ensemble N par

N := {m ∈ N : m ⩾ 1 et
m∑
k=1

(2k − 1) = m2}.

Maintenant on vérifie les deux points de la Proposition 1. On a que 1 ∈ N , car
1 = 12. Si n ∈ mcN on a que

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

En ajoutant 2(n+ 1)− 1, c’est-à-dire 2n+ 1, on obtient

1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1) = (n+ 1)2,

ce qui montre l’égalité pour n+ 1. Ainsi n+ 1 ∈ mcN . Ainsi l’égalité est vraie
pour tout entier ⩾ 1 par Proposition 1.

3. On definit l’ensemble N par

N := {m ∈ N : m ⩾ 0 et Σ2(n) =
n(n+ 1)(2n+ 1)

6
}.

On vérifie les deux points de la Proposition 1. On a que 0 ∈ N , car 0 = 10(1)(3)
6

.
Si n ∈ mcN on a que

Σ2(n) =
n(n+ 1)(2n+ 1)

6
.



Alors

Σ2(n+ 1) = 12 + . . .+ (n+ 1)2

= Σ2(n) + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)(n+ 1)

6

= ... =
(n+ 1)(n+ 2)(2n+ 3)

6

Ainsi n + 1 ∈ N . Ainsi l’égalité est vraie pour tout entier ⩾ 0 par Proposition
1.

Exercice 3. Soit x > −1 un nombre reel. Montrer en utilisant le principe de recur-
rence que pour tout entier n ⩾ 1

(1 + x)n ⩾ 1 + nx. (Inegalite de Bernoulli)

Solution 3. On peut encore definir l’ensemble N par

N := {m ∈ N : m ⩾ 1 et (1 + x)n ⩾ 1 + nx}.

Maintenant on motrer Proposition 1. Evidemment pour n = 1 l’inégalité de Bernoulli
est vraie. Supposons alors que (1 + x)n ⩾ 1 + nx. Alors, pour n+ 1, on a :

(1 + x)n+1 = (1 + x)n(1 + x)

⩾ (1 + nx)(1 + x) (on utilise l’hypothèse et que (1 + x) > 0)

= 1 + (n+ 1)x+ nx2

⩾ 1 + (n+ 1)x (car nx > 0).

Ainsi l’inégalité est vraie pour tout entier ⩾ 1.

2 Ensembles

Exercice 4. On rappelle que si E est un ensemble, la reunion de E,
⋃

E est l’ensemble
dont les elements sont exactement les elements des elements de E (on rappelle que
ces elements sont eux-meme des ensembles qui peuvent donc posseder des elements).



1. Soit A ̸= ∅ un ensemble non vide, montrer que⋃
{A}

= A.

2. Que valent ⋃
∅

,
⋃
{∅}

,
⋃

{∅,A}

?

3. Que vaut A ∪ ∅?

Solution 4.

1. On va montrer l’egalité par double inclusion. On commence avec x ∈
⋃
{A}

. Par

definition ca veut dire que x est un element d’un element de {A}. Plus concrete-
ment : Les elements de {A} sont A, alors x est un element de A. Ainsi x ∈ A et
avec ca x est contenue dans la côté droite et on a fini la premiere inclusion. Pour
l’autre inclusion on prends un y ∈ A. Si y ∈ A, on sait que y est un element
d’un element de {A}. Ainsi par la definition de la reunion y ∈

⋃
{A}

et on peut

conclure l’autre inclusion.

2. ∅, ∅ et A

3. A

Exercice 5. Soit X un ensemble. Pour A,B des sous-ensembles de X on defini la
difference de A et B

A−B := {x ∈ A, x ̸∈ B} ⊂ X

(les elements de A qui ne sont pas des elements de B). En particulier

X − A = {x ∈ X, x ̸∈ A} ⊂ X

(l’ensemble des elements de X qui ne sont pas dans A) est appelle le complementaire
de A dans X et est note Ac.

On defini alors la difference symetrique de A et B en posant

A∆B := A ∪B − A ∩B = {x ∈ A ∪B, x ̸∈ A ∩B} ⊂ X

(les elements de X qui sont dans la reunion de A et B et qui ne sont pas dans leur
intersection).

1. Montrer que A∆B = B∆A = (A−B) ∪ (B − A).

2. Calculer ∅∆A, A∆A, A∆X, A∆Ac.



Solution 5.

1.

A∆B = {x ∈ A ∪B, x ̸∈ A ∩B}
= {(x ∈ A ou x ∈ B) et (x /∈ A ∩B)}
= {(x ∈ A et x /∈ A ∩B) ou (x ∈ B et x /∈ A ∩B)}
= {(x ∈ A et x /∈ B) ou (x ∈ B et x ̸∈ A)}
= {(x ∈ A et x /∈ B)} ∪ {(x ∈ B et x ̸∈ A)}
= (A−B) ∪ (B − A)

Peut être egalement démontré par double inclusion.

2. ∅∆A = A, A∆A = ∅, A∆X = Ac, A∆Ac = X

Exercice 6. On considere l’application polynomiale (dite de Cantor)

C : (m,n) ∈ N2 7→ ((m+ n)2 +m+ 3n)/2 ∈ N.

1. Verifier que C est bien une application de N2 vers N.
2. Calculer les valeurs C(m,n) pourm+n ⩽ 3 et les reporter sur les point (m,n) ∈

Z2 d’une representation du quart de plan {(x, y), x, y ⩾ 0}.
3. Pour k ⩾ 0 un entier, on definit le sous-ensemble

Dk = {(m,n) ∈ N2, m+ n = k}.

Quelles sont les valeurs prises par C(m,n) quand (m,n) decrit Dk ?

4. En deduire que pour tout entier l ∈ N il existe (m,n) tel que

C(m,n) = l

et que un tel couple (m,n) est unique. On dit que l’application polynomiale
C : N2 → N est une bijection entre N2 et N.

Remarque. Une autre application possible (obtenue par symetrie) est

C ′(m,n) = ((m+ n)2 + 3m+ n)/2.

On ne sait pas si il y existe d’autre applications polynomiales etablissant une bijection
entre N2 et N.

Solution 6.

1. Rappelons nous d’abord de quelques faits utiles. Pour n,m ∈ N :



• Si n et m sont tous les deux pairs ou tous les deux impairs alors n+m est
pair :
Dans le premier cas on écrit n = 2p et m = 2q avec p, q ∈ N, puis on voit
facilement que n+m = 2(p+ q︸ ︷︷ ︸

∈N

) est pair.

Dans le deuxième cas on écrit n = 2p + 1,m = 2q + 1 et alors n + m =
2(p+ q + 1︸ ︷︷ ︸

∈N

), ce qui montre à nouveau la parité.

• Si n est pair et m est impair alors n+m est impair (par un raisonnement
similaire au précédent).

• Le carré d’un entier pair est pair :
De même qu’avant, on écrit n = 2p et alors n2 = 4p2 = 2 · 2p2︸︷︷︸

∈N

donc n2

est pair.

• Le carré d’un entier impair est impair :
De même qu’avant, on écrit n = 2p + 1 et alors n2 = 4p2 + 4p + 1 =
2 · 2p2 + 2p︸ ︷︷ ︸

∈N

+1 donc n2 est impair.

Maintenant on veut montrer que (m+n)2+m+3n est toujours pair en faisant
une grande disjonction des cas sur la parité de n et m :

• n et m pairs : alors m+ n et m+ 3n sont pairs, donc (m+ n)2 +m+ 3n
est aussi pair et donc C(m,n) ∈ N✓

• n et m impairs : pareil qu’au dessus✓
• n pair et m impair : alors n+m est impair, (n+m)2 aussi, et m+3n aussi,

donc (m+ n)2 +m+ 3n est pair et C(m,n) ∈ N✓
• n impair et m pair : pareil qu’au dessus✓

2. Les paires possibles sont

{(m,n) ∈ N2 | n+l ⩽ 3} = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)}

Les valeurs de C(m,n) sont données par le tableau ci-dessous :
n\m 0 1 2 3
0 0 1 3 6
1 2 4 7
2 5 8
3 9

3. Remarquons tout d’abord qu’on peut ré-écrire Dk = {(m, k−m) | 0 ⩽ m ⩽ k}.

Alors ∀(m, k − m) ∈ Dk : C(m, k − m) = (m+k−m)2+3m+k−m
2

=
k2 + k

2︸ ︷︷ ︸
=:ck

+m et

donc
C(Dk) = {ck +m | 0 ⩽ m ⩽ k} = Jck, ck + kK



(les doubles crochets symbolisent des intervalles d’entiers).

Nous avons défini la grandeur ck pour pouvoir exprimer plus simplement la re-
lation suivante : ∀k ∈ N, ck+1 = ck + k+ 1. En effet k2+k

2
+ k+ 1 = k2+k+2k+2

2
=

(k+1)2+(k+1)
2

.

Ainsi, tous les intervalles C(Dk) sont contigus, et ne se chevauchent pas (si
l’intervalle C(Dk) se termine à la borne a, alors l’intervalle C(Dk) commence à
la borne a+ 1). Comme ils commencent à 0 et leur taille ne fait qu’augmenter,
ils couvrent tout N et ils en créent une partition :

N =
⊔
k∈N

C(Dk)

On pourrait aussi le voir à partir du fait que la suite {ck}k∈N est strictement
croissante et tend vers +∞ donc

N =
⊔
k∈N

Jck, ck+1J=
⊔
k∈N

C(Dk)

4. Tout d’abord, ∀k ∈ N, la restriction C|Dk
: Dk → C(Dk) est bijective puisqu’elle

est définie de maniére ”affine” : C(m, k −m) = ck +m. Ensuite, pour montrer
que C elle-même est bijective on n’a qu’à montrer que chaque élément y ∈ N a
un unique antécédent par C. C’est le cas puisque les ensembles C(Dk), k ∈ N
forment une partition de N, donc ∃!ky ∈ N : y ∈ C(Dky). Mais alors comme C
est bijective lorsque restreinte à Dky , y a un unique antécédent dans Dky et donc
dans N2. S’il y en avait un autre dans Dk′ alors on aurait {y} ⊆ C(Dky)∩C(Dk′)
et donc l’intersection n’est pas vide comme on l’a montré dans la question
précédente.
Ainsi C : N2 → N est bien bijective.
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